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I. SUMMARY

Our experimental study has focused on laboratory measurements of the low temperature optical

properties of a variety of astronomically significant materials in the infrared and ram-wave region

of the spectrum. Our far infrared measurements of silicate grains with an open structure have

produced a variety of unusual results: (1) the low temperature mass opacity coefficient of small

amorphous 2MgO.SiQ and MgO.2SiO2 grains are many times larger than the values previously

used for interstellar grain material; (2) all of the amorphous silicate grains studied possess the

characteristic temperature dependent signature associated with two level systems in bulk glass;

and (3) a smaller but nonzero two level temperature dependence signature is also observed for

crystalline particles, its physical origin is unclear. These laboratory measurements yield

surprisingly large and variable values for the mm-wave absorption coefficients of small silicate

particles similar to interstellar grains, and suggest that the bulk absorptivity of interstellar dust at

these long wavelengths will not be well known without such studies. Furthermore, our studies

have been useful to better understand the physics of the two level absorption process in

amorphous and crystalline grains to gain confidence in the wide applicability of these results.



II. PROJECT REPORT

A. Management approach

In addition to authoring joint research papers, S. V. W. Beckwith and A. J. Sievers continue to

maintain weekly e-mail contact with regard to this experimental program.

B. Personnel

The following additional people have been involved with the research program: one

undergraduate - S. Smith; two graduate students - R. Lai and S. A. Jones, and one postdoc - N.

Agladze. Some of the silicate samples have been prepared by Professor J. M. Burlitch in the

Chemistry Department.

C. Unusual features of the mm-wave properties of silicate grains

1. Background

Knowledge of the optical constants of a number of grain materials is essential to interpret

observations of emission and absorption by dust particles, see Refs. [1-7] and references

therein). The best estimates of the far IR absorptivity of interstellar grain material [ 1, 8, 9]

generally predict values for the mass opacity coefficient of interstellar particles in the range

t,Cv=0.3/ v //3_ cm2g- 1
lOcm -1

(I)

where _?= l/k, is the frequency in cm -1, and [3 = 2. This value of the index [3 has been argued

on fairly general grounds to apply to the low frequency region of both crystalline [8] and

amorphous 3-D materials. On the other hand, for amorphous carbon and layered-lattice silicates,

where the phonon density of states is 2-D then the same arguments can be used to predict that [3 -

1 [10]. Emerson [8] has shown, using Kramers-Kronig arguments, that [3 > 1 in order to be

physically acceptable. At the same time, observations of submillimeter wave emission from stars

in Taurus and Ophiuchus demonstrate that ]3 < 1 is clearly preferred to fit the spectral

distributions [11-14]. Values of [3 < 2 are also identified with disks and for large scale

distributions of dust in the Galactic plane [15]. Radiative transfer calculations by [16] indicates a

similar slow frequency dependence required to understand emission from dense clouds as well.

At the same time there are observations in the 100 to 300 btm region indicating a more rapid

increase in opacity with frequency, [3 - 2 (Ref. [17], indicating perhaps that the opacities do not

obey a single power law over the entire long wavelength region. In addition, there may be some

variation among the different environments (diffuse ISM, cold molecular cloud cores, and

circumstellar disks).

Optical constants have been measured in the laboratory for several materials relevant to

astronomy over limited wavelength ranges, mainly from optical to infrared wavelengths[ 18, 19].
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Therearevirtually nomeasurementsof theopticalpropertiesof therelevantmaterialsatfar
infraredandmm-wavelengths,especiallyattemperaturesappropriateto theinterstellar
environment[9].Sinceinterstellargrainsaremostlikely disordered,animportantquestionis
whetheror notdisorder-relatedfar-infraredbulk processesplayasignificantrole in thefar
infraredthermalemissionfrom thesesources.Suchtemperaturedependenteffectsarenot
usuallyconsideredwhenextrapolatingshortwavelengthopticalconstantsto longer
wavelengths[3,8, 17]. Partof ourexperimentalprogramis to determinewhethersimilareffects
occurin smallparticlesof astronomicallyimportantmaterials.

2. Spectral results at low temperatures

Our first broad experimental examination of the low temperature properties of the mm-wave

properties of grains has focused on crystalline enstatite and forsterite grains and amorphous

silicate grains synthesized by sol-gel reaction (size - 0.1 - 1 btm). Their absorptive properties

have been measured between 0.7 and 2.9 mm wavelength (3.5 - 15 cm -1) at temperatures

between 1.2 and 30 K. The precursor silicate powders were synthesized by a H202-assisted,

sol-gel reaction [20]. Some of the amorphous powders are precursors to forsterite (MgzSiO4)

and enstatite (MgSiO3). All of these grains display an open structure. Typically we find that

micron scale flakes are made up of fibers of about 25 nm width by 100 nm length. This

morphology is consistent with the linear structure indicated by 29Si NMR spectroscopy [21 ].

Note that because of this open structure, the effective volume fill fraction of the amorphous

powder is small. It should be noted that previous far infrared measurements on open structured

systems has shown that they tend to adsorb gases from the atmosphere; hence, in order to obtain

intrinsic information, the samples must be heated and evacuated before being examined [22]. In

the measurements we have made, all the grain samples were evacuated for 1 hour at 150 C before

the optical cell was sealed.

The results have provided a number of surprises some of which will be taken up in future work

(see Section B). One was that for the amorphous grain substances MgO.SiO2, 2MgO-SiO2, and

MgO-2SiO2 at 20 K, the millimeter-wave mass opacity coefficients are found to be up to factors

of 0.9, 3.5 and 11 times the [1] values usually adopted for interstellar silicate grains. The

measured values at lower temperatures are even larger. In addition, the coefficients are found to

depend on the powder production technique.

A summary of some of these results are presented in Figure 1. Figure 1 (a) compares the mass

normalized absorption coefficient k = a/r between 3.5 and 15 cm -I (1 between 2.9 and 0.7 mm)

for forsterite and enstatite powders in the amorphous precursor and crystalline states, for

MgO.2SiO2 in the amorphous state and for bulk soda-lime-silica glass, all at 1.2 K. The largest

_: over this frequency region is produced by the amorphous MgO-2SiO2 powder. The second

largest is the 2MgO.SiO2 powder.

Figure 1 (b) shows the same data but now corrected so that the single grain mass opacity

coefficients kn are displayed. To do this correction it was necessary for us to extrapolate from

the measured composite media sample to the desired single grain configuration. We have derived

an analytic expression can be used to connect the two quantities[23].
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Figure 1. Measured absorption coefficient per unit mass as a function of frequency for amorphous precursor and

crystalline forsterite and enstatite powders, amorphous MgO'2SiO2 and for bulk glass, all at 1.2 K. (a) the mass

normalized absorption coefficient, n. (b) the grain opacity, _:n, as determined by Eq. 5. Solid line- amorphous

MgO.2SiO2; open circles with error bars - amorphous 2MgO'SiO2 powder; dashed-double dotted line - bulk soda-

lime-silica glass: dotted line - heat treated (1 hour at 150°C) crystalline powder; dash-dot curve - crystalline

forsterite powder without heat treatment. Short-long dashed line - amorphous MgO-SiO2 powder; double dashed-

dotted line - heat treated ( 1 hour at 1500C) crystalline enstatite powder. All powdered samples were evacuated

before sealing the optical cell.

The mass opacity coefficient of a grain _n can be written in terms of fundamental properties of

the material by noting that for spherical particles[8, 17]

3 1 Qab 
4p a

(2)

where

4 2tea Im( e - l 1 = 4 2_a Im(e-_+32)
(3)
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and E = _l + iE2 is the bulk dielectric function of the grain material. For dielectrics, in the limit of

low frequencies, E1 takes on a large constant value r0 while _2 becomes small. Hence the

approximate expression for the grain absorption efficiency over the grain radius simplifies to

Qabs _ 12 2 _ e 2 = 12 co e 2 (4)

a ,_ (e, +2) 2 c (s, +2) 2.

The relation between the mass opacity coefficient of the isolated grain and the mass normalized

absorption coefficient 1( = _9 of the measured composite medium in the low frequency limit is

obtained from an expansion of a composite media expression for small f. The final result is[23]

_c(co, f) _ 1+ 1 (e 0 - 1)(1380 - 10) f+ 3 (s 0 - 1)2(85802- 268e 0 +81) f2, (5)

_¢v(CO) 2 (80 + 2) 2 8 (80 + 2) 4

which can be written as

_:v(_) = g(eo,f) _¢(co,f), (6)

where g(E0, f) is the finite concentration reduction factor.

The effective volume fill fraction of the amorphous MgO.2SiO2 and 2MgO.SiO2 powders is

small enough that the coefficients in Figure 1(a) can be compared directly with those determined

for isolated spherical grains in (b). Samples with larger fill fractions show significant change

between the two panels: Soda-lime-silica glass, which is the third strongest absorber in (a), is

the fourth from the bottom in (b). The measured k is significantly larger for evacuated powder

which had been baked at the same time compared with powder that was sealed at room

temperature. The change in the magnitude of K with heat treatment for crystalline forsterite grains

is surprising. This extra contribution may be associated with the grain surfaces, how much of

the surface appears amorphous and whether or not they are coated by adsorbed gases. It is

noteworthy that removing the adsorbed gas increases tc

The mass opacity coefficients are unexpectedly large for some of these particles. It is noteworthy

that at 20 K the absolute value of k n for amorphous MgO-2SiO2 is about 11 times larger and

amorphous 2MgO-SiO2 is about 3.5 times larger than the value normally adopted by astronomers

- 0.3 cm 2 g-I _ for silicates in interstellar dust. The relatively large coefficients indicate other

absorption mechanisms operate at these frequencies in addition to the asymptotic tails of higher

frequency resonant processes such as the - 10 [am lattice resonances [8].

3. Temperature dependent properties indicative of two level behavior

The temperature dependence of the absorption coefficient per unit mass is somewhat different

than that found in bulk crystals in that the absorption at first decreases with increasing

temperature until about 20 K and then increases at higher temperatures. This unusual temperature
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Figure 2. Temperature dependence of the absorption coefficient per unit mass for amorphous 2MgO'SiO2 grains

versus frequency. (a) n as a function of temperature. Over this frequency range n(T) decreases with increasing

temperature up to about 20 K and then increases again at higher temperatures. (b) Difference in n for specific

temperature jumps. The ordinate: --An = [K(T) -- K(Tr)] where T r = 1.2 K. Typical error bars are given.

dependent property forms a significant part of the overall absorption at long wavelengths and the

relative change is as large as 50% at 1 mm wavelength for 2MgO.SiO2, 35% for MgO-SiO2 and

14% for MgO.2SiO2. This temperature dependence of K is an important diagnostic of the

physics governing the absorption process. The frequency dependence of the mass normalized

absorption coefficient as a function of temperature is presented in Fig. 2(a). This dependence is

most accurately studied as the difference between two spectra acquired at different temperatures.

Figure 2(b) shows the temperature dependent results for amorphous 2MgO-SiO2 grains from 1.5

K to 30 K presented as -AK = K(1.2 K) - _:(T) versus frequency. Note that if K(T) is smaller

than _:(1.2 K) at each temperature, then -AK is greater than zero as are most of the traces in this

figure. This low frequency bleaching behavior of K(T) with increasing temperature is observed

up to about 20 K. At the highest temperature of T = 30 K (dashed curve), the trend is reversed,

and the temperature dependent absorption coefficient is now larger than it is at 20 K although still

smaller than at 1.2 K. Note that the magnitude of A_ is larger than the magnitude usually

adopted for K itself for interstellar grains; the temperature dependence is clearly an important

characteristic of these amorphous grain materials.



A systematic study of this temperature dependence demonstrates that the results are somewhat

similar to those found earlier in bulk glasses. At millimeter wavelengths, amorphous solids

show strongly temperature dependent absorption coefficients. At the lowest temperatures, the

mm wave absorption coefficient is dominated by a constant spectral density of low lying two

level tunneling states [24]. As the temperature increases above 0 K, the absorption decreases due

to increased population in the excited states [25]. When the temperature gets high enough (a few

tens of Kelvin), most of the two level states (TLS) are equally populated and this absorption

process becomes extremely weak; however, absorption to the higher excited states of TLS

becomes stronger [26]. At still higher temperatures relaxation processes appear to control the

absorption coefficient and this effect grows in strength with increasing temperature [27, 28]. The

original explanation for these TLS [29] is that atoms and groups of atoms tunnel in the disordered

system, but the underlying dynamics behind such states is still not understood and this issue

constitutes one of the outstanding problems in condensed matter physics. To illustrate the exact

temperature dependence of the absorption coefficient, we write the mass normalized two level

absorption coefficient at frequency m (r/s) and temperature T as[30]:

4/_2N1./2co tanh( h(.o "),
KTLS(O)) -- C_o Pb \2kT)

(7)

where N is the density of states,

2 (8)

is the modulus squared of the effective electric dipole matrix element of the transition between the

two states, s 0 is the dielectric constant, Pb the bulk density, c the speed of light and k is

Boltzmann's constant. Specific heat measurements on bulk glasses at low temperatures show

that N is essentially frequency independent at low frequencies [24]. Fits to the temperature

dependent data can be used to determine the temperature independent coefficient in Eq. (7). Our

findings for the frequency dependence of the density of states times the dipole moment squared,

Nbtb 2, are presented in Figure 3. The value of _0 for different olivines varies from 8.4 to 9.5,

and we used s o = 9 in the calculations described above. There is no value of e0 available for

enstatite or for MgO-2SiO2. so we make use of the dc dielectric constant data for augite,

Ca(Mg,Fe,AI)(A1,Si)206, which varies between the limits 6.90-10.27. The value 9, the same as

for forsterite, was used for each calculation of the local field correction in Eq. 5. In all the

systems studied, Fig. 3 indicates that the ordinate value, Nbtb2, is nearly independent of

frequency. The uncertainties evaluated as mean square deviations from Eq. (7) are smaller than

the symbols. As anticipated the measured densities of the crystalline and the amorphous powders

are quite different. This significant difference in densities between the particles and the bulk

occurs because the amorphous grains have an open aerogel [31 ] or fractal-like structure. Note

the surprising result in Figure 3 that even the crystalline grains show a small degree of two level

behavior in the ram-wave region.
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Figure 3. Frequency dependence of the product of the two level density of states times the dipole moment squared

versus frequency. Open squares - amorphous 2MgO'SiO2 grains; solid squares - amorphous MgO-2SiO2; stars -

amorphous MgO'SiO2 grains; diamonds - bulk soda-lime-silica glass; triangles - heat treated (1 hour at 1500C)
crystalline forsterite grains; circles - crystalline forsterite grains without heat treatment.

4. Temperature dependence of the mm-wave index value

Figure i shows that _:n(l.2 K) for amorphous 2MgO.SiO2 grains is about six times larger than

for the crystalline grains and more than seven times larger than for bulk soda-lime-silica glass,

while the value for amorphous MgO.2SiO2 is quite a bit larger still. This extra dipole strength in

the amorphous silicate grain could come from local inhomogeneities. The frequency dependence

of the absorptivity of small amorphous grains produced by a charge fluctuation mechanism has

been examined by [32], who proposed that the emission efficiency in the long wavelength region

would vary as _-1 because of the importance of surface phonon modes. Since a vibrational

spectrum is involved in the mechanism[33], this contribution should be nearly temperature

independent, and is in marked contrast with the strongly temperature dependent nature of our

experimental data for the mm -wave region. Note that the distribution of two level systems

required to explain our results are still outside the framework of lattice dynamics theory. The low

temperature data for the amorphous powders can be fitted approximately with a power law as is

customary in astronomy, toy(_,) - _/3, with the power law index 13as given by Eq. 1; however,

because of the temperature dependence of the 2-level density of states, we find that the power law

index is temperature dependent. Figure 4 displays the temperature dependence of the power law

index over the temperature range investigated as determined by a least squares fit to the data. The

values of ]3(T), determined for the amorphous precursor grains of forsterite and enstatite between
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MgO'SiO2 spectra and the crosses, to the amorphous MgO'2SiO2 spectra.

5 and 15 cm -I, are remarkably similar: at low temperature the power law index is about 1.5, it
then increases to a maximum value of about 2.5 at 10 K and then decreases to about 2 for

temperatures slightly above 20 K. These 20 K values are essentially in agreement with the value

of 2 normally adopted for interstellar dust [ 1]. The values of [3(T) determined for amorphous

MgO.2SiO2 display only a weak temperature dependence and the small value of 1.2 is in accord

with values recently found for circumstellar particles, for example Refs. [12, 34] and references

therein).

In summary these far infrared measurements show: (1) that the low temperature mass opacity

coefficient of small amorphous 2MgO.SiO2 and MgO-2SiO2 grains are many times larger than

the values previously used for interstellar grain material while that of MgO.SiO2 is found to be

comparable; (2) that all of these silicate grains studied possess the characteristic temperature

dependent signature associated with two level systems in bulk glass; and (3) that a smaller but

nonzero two level temperature dependence signature is also observed for crystalline particles.

The large magnitude of the observed low temperature absorption coefficient may be a

consequence of non-stochiometry within the grain while the source of the temperature
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dependenceis resonantabsorptionby theglassytwo levelsystems.Moresystematicstudies
includingsizedependentmeasurementswill berequiredto determineif thiseffect isassociated
with thegrainsurfaces.

Theselaboratorymeasurementsyield surprisinglylargevaluesfor themm-waveabsorption
coefficientsof smallparticlessimilarto interstellargrainsandsuggestthatthebulk absorptivityof
interstellardustat theselongwavelengthswill notbewell knownwithoutsuchstudies.
Furthermore,it will beusefulto understandthephysicsof thetwo levelabsorptionprocessto
gainconfidencein thewideapplicabilityof theseresults.

D. Extinction limits for a grain of arbitrary size and shape

The ubiquitous nature of the scattering and absorption of electromagnetic radiation by small

particles has attracted scientific interest since the time of Tyndall and Lord Rayleigh. Whether

one is examining aerosols in the atmosphere or starlight transmitted through interstellar dust, the

extinction properties of the intervening particles need to be understood. By extinction one means

absorption plus scattering since the extinction cross-section of a particle, in general, involves a

subtle mix of scattering and absorption. Although coal smoke is black in the visible and water

droplets are transparent, there are other frequency regions where the absorptive properties of

these two different media are reversed, i.e., the coal smoke is transparent and the water is

opaque. While the spectral properties of the ingredients in the particle are clearly important, its

size and shape also play a key role. Absorption is the dominant factor in the extinction of a small

particle and the spectral properties of such extinction are well understood. With increasing

particle size compared to the wave length of the radiation, scattering becomes more significant

and eventually dominates. The complexity of the scattering problem becomes apparent when one

recognizes that the extinction cross section of a large opaque particle is equal to twice its

geometrical cross section. The extra contribution comes about because of scattering at the particle

edge. Given that a small particle may display spectral features in its extinction cross section

characteristic of the bulk material while a large particle of the same material may only show a

frequency independent extinction cross section over the same spectral region, it is intriguing that

recently two general properties of the extinction spectrum have been found which characterize the

electromagnetic properties of the particle independent of its scattering contribution.

A basic concept of response theory is that the particle cannot emit before the electromagnetic

wave has arrived. This result and the general property that the extinction cross section is related

to the scattering amplitude function in the forward direction (optical theorem) provide the building

blocks with which one can demonstrate that the extinction cross section at some frequency is

proportional to the plasma frequency squared contributed at that frequency. The plasma

frequency is a particular combination of fundamental elements involved in the electromagnetic

response, i.e., the number density, charge and mass of the charges involved. When all such

frequency contributions are summed then the total strength, or plasma frequency squared,

associated with the electromagnetic response of this medium is obtained[35, 36]. Since this sum

is equal to the area under the extinction cross section spectrum, this "strength sum rule" which is

independent of scattering and hence independent of the particle shape is particularly easy to

visualize. The "dc polarizability sum rule"[37, 38] for the particle provides another constraint on

the particle response since the extinction cross section divided by the frequency squared is
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proportionalto thestaticpolarizabilityof theparticlecontributedat thatfrequency.Finally the
ratioof thesetwo sumrulesproducesasize-independentcharacteristicsquaredfrequencyof the
extinctioncross-sectionspectrum.All threeof theseresultscharacterizeandconstrainthe
observablepropertiesof theextinctionspectrum.

To illustratethepropertiesof thesesumrulesfor differentsizeparticles,theextinctioncross
sectionof spheresof singlecrystalsiliconhavebeenexploredby computationalmethodssince
thecomplexrefractiveindexof bulk siliconhasbeenmeasuredbetween3.7meVand2 KeV[39].
Theresultsfor thevolumenormalizedextinctioncrosssection(Ext.)versusfrequencyareplotted
in Fig. 5 for sphereswith two verydifferentdiameters:0.01I.tmand2.0 l.tm. Absorptionis the
dominantfactorin theextinctioncrosssectionfor the0.01btm diameter silicon sphere, and the

corresponding extinction spectrum displays a resonance structure similar to the bulk material: a

peak associated with interband transitions and L and K edges. Scattering becomes more

important with increasing size, however, and it finally dominates for the 2.0 ].tm diameter sphere.

Inspection of this extinction spectrum in Fig. 5 shows that it is nearly frequency independent

over much of the interval (the L and K edges are now barely visible) with a value close to twice

its geometrical cross section as expected for this limit. Although Fig. 5 demonstrates that the

spectra produced by small and large spheres have little in common, according to the sum[40] rule
the area under each of these curves is the same since the same material is involved.
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Figure 5. Volume normalized extinction cross section of single crystal silicon spheres vs frequency. The solid
curve is for 0.0l I.tm diameter and the dashed curve is for 2.0 btm diameter.
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Figure6 showsthevolumenormalizedfrequencydependentextinctioncross-section(Ext.)
dividedby thesquareof thefrequencyfor thetwosizedparticles.Againthetwo kindsof
extinctionspectrafor smallandlargeparticleslookdramaticallydifferentbecausetheyare
producedby differentmechanismsyet theareaundereachof thesecurvesis againthesame.
Whentheareafoundin Fig.5 is dividedby theareafoundin Fig. 6 athirdgeneralpropertyof
theparticleappears.It canbeshownthatthisratiodependsonly on theshapeof theparticleand
thedcdielectricconstantof thebulk mediumfrom whichtheparticleismadeandnoton the
particlesize.

Sincethebulk dielectricconstantof SihasnotbeenmeasuredabovetheK edge,theextinction
spectrumof siliconspherescannotbecalculatedabovethisvalue.Theavailabledatastill
providesagreatdealof insightinto thescatteringproblem.Theprocedureis to defineeffective
sumrulevaluesfor Figs.5and6 asafunctionof theupperlimit of integrationsothattheratioof

thetwo givesacharacteristicsecondmomentfrequencyof theparticle,< co2 >ext. If the

complete frequency range is covered then this characteristic squared frequency is independent of

particle size but if the frequency interval is finite the particle size enters. This difference between

the two results is demonstrated in Fig. 7. Inspection of the results for the 0.01 gm diameter

particle shows that with increasing frequency the characteristic squared frequency reaches a
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Figure 6. Volume normalized extinction cross section divided by frequency squared for single c_stal silicon

spheres vs frequency. The solid curve is for 0.01 #m diameter and the dashed curve is for 2.0 gtm diameter.
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plateau after the absorption band of bonding electrons is passed. It remains at this plateau value

until the L-edge excitation threshold is reached whereupon the characteristic particle squared

frequency increases again. It reaches another plateau after the absorption band of L electrons is

passed and essentially remains at this value until the K-edge is reached. The contributions from

the different electrons are well separated in frequency. For example, the L electrons produce no

contribution to the absorption at frequencies below the L-edge, but do contribute to the real part

of bulk dielectric function at lower frequencies. Since it is the real part of the dielectric function

which enters in the scattering process, extinction curves for larger particles mix contributions

from all electrons through scattering. Although the curve associated with the larger particle

displays no spectral information about the bulk dielectric function, it is clear that this curve would

reach the same value as for the small particle if the integration could be extended to a frequency

above the K-edge. A similar analysis hold for nonspherical particles and particles embedded in an

index matching medium[40].

This illustration with silicon particles of different sizes shows that although the extinction spectra

of a small and a large particle made from the same bulk material are completely different, the two

extinction sum rule values are conserved quantities independent of particle size. The strength

sum rule is not only independent of particle size but also of particle shape while the dc sum rule is

connected to the static polarizability, and hence to its shape.

wavelength (gm)

10 _ 10° 10"1 10.2 10 .3 10.4
10 la

1011

101°

r,_ 109

10a

107

K edge

- L edge |

106 I I _ I
103 104 10s 106 107 108

frequency (cm 1)

.-)

Figure 7. The characteristic second moment frequency of the particle.. < o_" >ext vs frequency. The particle
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